在工具提示中显示 Numpy 图像#

在本教程中,你将学习如何在任何 Altair 图表中使用工具提示显示存储为 Numpy 数组的图像。

首先,我们创建一些示例图像数组,其中包含不同大小和形状(圆形和方形)的斑点(对象)。我们测量斑点的面积,以便在图表中获得用于比较的定量测量值。

import numpy as np
import pandas as pd
from scipy import ndimage as ndi

rng = np.random.default_rng([ord(c) for c in 'altair'])
n_rows = 200

def create_blobs(blob_shape, img_width=96, n_dim=2, sizes=[0.05, 0.1, 0.15]):
    """Helper function to create blobs in the images"""
    shape = tuple([img_width] * n_dim)
    mask = np.zeros(shape)
    points = (img_width * rng.random(n_dim)).astype(int)
    mask[tuple(indices for indices in points)] = 1
    if blob_shape == 'circle':
        im = ndi.gaussian_filter(mask, sigma=rng.choice(sizes) * img_width)
    elif blob_shape == 'square':
        im = ndi.uniform_filter(mask, size=rng.choice(sizes) * img_width, mode='constant') * rng.normal(4, size=(img_width, img_width))
    return im / im.max()

df = pd.DataFrame({
    'image1': [create_blobs('circle') for _ in range(n_rows)],
    'image2': [create_blobs('square', sizes=[0.3, 0.4, 0.5]) for _ in range(n_rows)],
    'group': rng.choice(['a', 'b', 'c'], size=n_rows)
})
# Compute the area as the proportion of pixels above a threshold
df[['image1_area', 'image2_area']] = df[['image1', 'image2']].map(lambda x: (x > 0.4).mean())
df
                                                    image1                                             image2 group  image1_area  image2_area
    0    [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     b     0.030599     0.070855
    1    [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     b     0.134006     0.167752
    2    [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     a     0.014865     0.195421
    3    [[0.8408188559277083, 0.8434385804894682, 0.84...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     c     0.097222     0.208550
    4    [[0.0, 0.0, 0.00030006935893488147, 0.00039595...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     b     0.072266     0.043294
    ..                                                 ...                                                ...   ...          ...          ...
    195  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     a     0.014865     0.100260
    196  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     a     0.040148     0.070747
    197  [[0.020642835524827916, 0.021450917851981367, ...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     b     0.122830     0.135091
    198  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...  [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0,...     a     0.064779     0.088542
    199  [[0.0, 2.078157310309435e-06, 2.74224551900630...  [[0.5236619475835835, 0.446206634299134, 0.398...     b     0.130317     0.145942
    
    [200 rows x 5 columns]

接下来,我们定义一个函数,将 Numpy 数组转换为base64 编码的字符串。这是工具提示识别数据是图像形式并正确渲染所必需的步骤。

from io import BytesIO
from PIL import Image, ImageDraw
import base64


def create_tooltip_image(df_row):
    """Concatenate, rescale, and convert images to base64 strings."""
    # Concatenate images to show together in the tooltip
    # This can be skipped if only one image is to be displayed
    img_gap = np.ones([df_row['image1'].shape[0], 10])  # 10 px white gap between imgs
    img_arr = np.concatenate(
        [
            df_row['image1'],
            img_gap,
            df_row['image2']
        ],
        axis=1
    )

    # Create a PIL image from the array.
    # Multiplying by 255 and recasting as uint8 for the images to occupy the entire supported instensity space from 0-255
    img = Image.fromarray((255 * img_arr).astype('uint8'))

    # Optional: Burn in labels as pixels in the images. Can be helpful to keep track of which image is which
    ImageDraw.Draw(img).text((3, 0), 'im1', fill=255)
    ImageDraw.Draw(img).text((3 + df_row['image1'].shape[1] + img_gap.shape[1], 0), 'im2', fill=255)

    # Convert to base64 encoded image string that can be displayed in the tooltip
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/png;base64,{img_str}"

# The column with the base64 image string must be called "image" in order for it to trigger the image rendering in the tooltip
df['image'] = df[['image1', 'image2']].apply(create_tooltip_image, axis=1)

# Dropping the image arrays since they are large an no longer needed
df_plot = df.drop(columns=['image1', 'image2'])
df_plot
        group  image1_area  image2_area                                              image
    0       b     0.030599     0.070855  ...
    1       b     0.134006     0.167752  ...
    2       a     0.014865     0.195421  ...
    3       c     0.097222     0.208550  ...
    4       b     0.072266     0.043294  ...
    ..    ...          ...          ...                                                ...
    195     a     0.014865     0.100260  ...
    196     a     0.040148     0.070747  ...
    197     b     0.122830     0.135091  ...
    198     a     0.064779     0.088542  ...
    199     b     0.130317     0.145942  ...
    
    [200 rows x 4 columns]

现在我们准备创建图表,当鼠标悬停在点上时,图表将显示图像作为工具提示。我们可以看到,正如预期的那样,大的白色斑点对应于较高的面积测量值。

import altair as alt

# The random() function is used to jitter points in the x-direction
alt.Chart(df_plot, width=alt.Step(40)).mark_circle(xOffset=alt.expr('random() * 16 - 8')).encode(
    x='group',
    y=alt.Y(alt.repeat(), type='quantitative'),
    tooltip=['image'],
    color='group',
).repeat(
    ['image1_area', 'image2_area']
).resolve_scale(
    y='shared'
).properties(
    title='Comparison of blob areas'
)

请注意,当将图像作为图表数据的一部分包含在内时,图表大小通常会增加数倍。上面图表的大小在不包含图像的情况下是 19 Kb,但添加图像后是 760 Kb。尽管这增加了 20 倍的大小,但 base64 编码仍然相当节省存储空间;如果我们将图像以原始 Numpy 数组格式包含在内,图表大小将达到 35Mb!

如果我们想更有趣、更精巧一些,我们可以一次显示一个图表,并根据下拉选择器动态更新 y 轴显示的内容以及图像工具提示中显示的内容。我们首先定义一个工具提示,它只包含单个图像,而不是将两个图像连接在一起。

def create_tooltip_image(img_arr):
    """Rescale and convert an image to a base64 string."""
    # print(img_arr)
    # Create a PIL image from the array.
    # Multiplying by 255 and recasting as uint8 for the images to occupy the entire supported instensity space from 0-255
    img = Image.fromarray((255 * img_arr).astype('uint8'))

    # Convert to base64 encoded image string that can be displayed in the tooltip
    buffered = BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode()
    return f"data:image/png;base64,{img_str}"

# The column with the base64 image string must be called "image" in order for it to trigger the image rendering in the tooltip
df[['image1_base64', 'image2_base64']] = df[['image1', 'image2']].map(create_tooltip_image)
# Dropping the image arrays since they are large an no longer needed
# Also drop the previous tooltip image for clarity
df_plot = df.drop(columns=['image1', 'image2', 'image'])
df_plot
        group  image1_area  image2_area                                      image1_base64                                      image2_base64
    0       b     0.030599     0.070855  ...  ...
    1       b     0.134006     0.167752  ...  ...
    2       a     0.014865     0.195421  ...  ...
    3       c     0.097222     0.208550  ...  ...
    4       b     0.072266     0.043294  ...  ...
    ..    ...          ...          ...                                                ...                                                ...
    195     a     0.014865     0.100260  ...  ...
    196     a     0.040148     0.070747  ...  ...
    197     b     0.122830     0.135091  ...  ...
    198     a     0.064779     0.088542  ...  ...
    199     b     0.130317     0.145942  ...  ...
    
    [200 rows x 5 columns]

在我们的图表中,我们需要使用一个转换(transform)来根据下拉菜单中的选择动态更新 y 轴列和工具提示列。代码中的注释更详细地解释了此图表规范中的每一行做什么。

metric_dropdown = alt.binding_select(
    options=['image1_area', 'image2_area'],
    name='Image metric '
)
metric_param = alt.param(
    value='image1_area',
    bind=metric_dropdown
)
alt.hconcat(
    # This first chart is the axis title and is only needed because
    # Vega-Lite does not yet support passing an expression directly to the axis title
    alt.Chart().mark_text(angle=270, dx=-150, fontWeight='bold').encode(
        alt.TextValue(alt.expr(f'{metric_param.name}'))
    ),
    alt.Chart(df_plot, width=alt.Step(40)).mark_circle(xOffset=alt.expr('random() * 16 - 8')).encode(
        x='group',
        y=alt.Y('image_area:Q').title(''),
        tooltip=['image:N'],
        color='group',
    ).properties(
        title='Area of blobs'
    ).transform_calculate(
        # This first line updates the image_area which is used for the y axis
        # to correspond to the selected string in the dropdown
        image_area=f'datum[{metric_param.name}]',
        # Since altair needs the tooltip field to be called `image`, we need to dynamically
        # change what's in the `image` field depending on the selection in the dropdown
        # This is further complicated by the fact that the string in the dropdown is not
        # an exact match for the column holding the image data so we need
        # to replace part of the name to match to match the corresponding base 64 image field
        image=f'datum[replace({metric_param.name}, "_area", "_base64")]',
    )
).add_params(
    metric_param
)